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We consider the class of invariant solutions which can describe only
vortex flows (curl P = 0, P is the generalized momentum) and show
that they contain solutions corresponding to flows from a plane or ¢y-
lindrical emitter with a linear voltage drop across it (direct heating)
in the temperature-limited regime®, The solution is obtained in an-
alytic form for emission from a plane in a uniform magnetic field
perpendicular to the flow plane, It alse (for 8 = 0) defines a plane
magnetron in the T-regime. The solution of the problem for a cylin-
drical emitter reduces to considering equations describing a cylindri-
cal diode or magnetron in the T-regime, where the shape of the col-
lector is given by the potential distriburion curve for these cases, We
can cxtend the results to a relativistic beam if restrictions are im-
posed on its relative dimensions which permit us to ignore the mag-
netic self-field, Brillouin type flows (including irrotational ones) are
studied in which particles move without intersecting the equipotential
surfaces along three-dimensional spirals on the surface of cones, An
analytic solution is given for relativistic Brillouin flow in a conical
diode when strict allowance is made for the magnetic self-field.

§1, Below we shall study solutions of the equations
of a stationary monoenergetic beam of charged parti-
cles with the same magnitude and sign of the charge-
mass ratio n in the nonrelativistic case [1, 2]; their
form is given in Table 1,
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Here V ig the particle velocity vector, ¢ is the
sealar potential, p is the space charge density, H is
the external magnetic field strength vector, J, == {J,,
Joo Joh Jo o da = {Jgd5 s} ave functions of &, o, B
are arbitrary congtants one of which is always non-
zZero, X, vy, and 2 are Cartesian coordinates, R, ¢,
and z are eylindrical coordinates, gy, Q, 2 are spiral
eylindrieal coordinates, and r, ¥, ¢, are spherical
eoordinates, The spiral coovdaintes q;, g, are related
to the oerdinary polar coordinatea R, ¢ by
fp = Eﬁ_?FiW (hl A+ —:i*w/‘,

(by, by = const).

*Below, for brevity, we shall use the term "T-re-
gime emission™ to define temperature-limited emis-
slon,

As in [3], the flow will be considered regular if the
generalized momentum P of the particle is a potential
vector. In this case we have the energy integral for
the flow as a whole:

V: L 2np = const. .1}

The solutions considered in [1, 2] may correspond
to both regular and irregular flows. The solutions
given in Table 1 cannot in principie describe regular
beams, since the form of the velocity vector and sca-
lar potential does not permit the energy integral to
exist in the form (1,1). Moreover, the solutions in
Table 1 are invariant. Below, we use the dimension=
less variables of [1, 2] unless otherwise stated.
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Fig. 1

Table 2 gives external magnetic fields which can
be realized without special sustaining devices in the
beam (Hyl are the physical components of the field
strength).

Here Hy. Hog. Hyg are athitrary constants,

Note that solutions 2° for & = 0 and §° for B = 0, which depend
upon ¥, have meaning only when 0 % ¢ < 2r, It is clear that the solu-
tions in Table 1 can describe flow in certain diodes with emitter in the
form ofs 1® a plane x = const; 2° a eylinder R = const, 8° a half-plane
Y= const; 4° a spiral cylinder qy = const; 6° & cone & = const, where
the emitter potential varies according to a linear or logarithmic law,
We can show that there are no solutions of the form 1°~5° fer whieh
the normal velocity compenent and the emitter field simultaneously
vanish.

Let us eonsider in detall flows of types 1° and 2° for e = 0, An at~
tempt to satisfy the corcespanding total space eharge eonditions leads
to an infinite tangential ewrent density at the emitter, It is shawn be-
low that these solutions ean deseribe temperature-limited emission in
certain dindes with direet heating,

The system of equations determining the solution
1° for H = 0 has the form
uu' =J,,

pu =j, J/)=p,

. (1.2)
uy' =

{j = const).

Here u, v, and w are the velocity components in
Cartesian coordinates, The first three equations de-
scribe flow in a plane diode, while the last gives the
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y-component of the velocity. Note that the particles
accelerate uniformly in the y-direction. For temper-
ature-limited emission

i~z u~xh o ~ ey

therefore v ~ xi/ 2, and the current density is every-
where finite. The equipotential surfaces ¢ = const are
completely determined by the potential distribution in
the corresponding one-dimensional flow

ay = — J, (2) + const. .
Table 2
Hya H g2 ng

1 Hyy Hyp Hog

2° Hy R HpR™ Heg

3° HupR HgpR™ 0

4° Ho]R—l H:zR—l 0

5° Hyrt r Y (Hoetg0+Hos csc 0) | Hosrlesc 6

Thus, in order to find the solution in question it is
sufficient to know the quantities describing a plane di-
ode in the T-regime [4]. The solution to this problem
can be given in parametric form (Fig. 1):

R S R e ow VI _
§2V2_t—|-2t, (=gt =150 =
= Loy ”22 t, 1.3)
R _ Y=Y 3%
=y e=T =)

Eliminating t from the expressions for £ and ¢, we

obtain the equation of the trajectory
§ =%, 1.4)

Curves of J,/j% determining the shape of the collec—~
tor as a function of £ for different v are given in Fig,

2, The particles leave the emitter x = 0 at an angle
#, = arc tg (g, / @), where g, = J," (0).
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Fig. 2

Let us consider three cases of motion of particles
in a uniform magnetic field H. We introduce the di~
mensionless variables r°, V°, ¢°, p° using the formulas

r=ar’, V=YgV ¢=—aet, p = (j | Vanes) >

Let the magnetic field initially be directed along
the z axis, Then, omitting the dimensionless symbol,
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we have
‘$.':Jdl+my.1 y“:B—m‘z.1 pm:iq
Jd =1p (1.5)
’ _i/ﬁ’r]_’/z _ 4naj
(m_c \eo) ’B—agov’r=mTo—)-

Here, the dots and bars are used to denote differ-
entiation with respect to t and x, respectively. We
can write the solution of (1.5) in parametric form.
Using t as the parameter [5], we easily obtain

X =0?z =1 —cost +p(t —sin 1),
Y =0%(@y —y)) =— T 4-sint +p (1 —cos7) — Atf,
O =0, =1 —cost +p(r—sint) + 1.6)
L A{2(sint —7eosT) - pl2(1 —cost— TsinT) 2]},
(p =20 4B, A=1/20, T = oi)
Figure 3 describes the trajectories for different
i, Ain X, Y coordinates, while Fig. 4 gives the curves
O =0 (X;p, M. Ifp=0, Egs. (1.6) define a plane
magnetron with temperature-limited emission., The

trajectories and curves of @ = @ (X; Myare shown in
Figs. 5 and 6.
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Fig. 3

When the magnetic field is directed along the y
axis, we arrive at the equations

uw =J, —ow, w=o0, pu=1,

T =, ¥ =B 1.7)
The first four equations define a plane magnetron.
The trajectory of a particle moving in this magne-

tron for T-regime emission will be developed in space

as a result of superimposition of the uniform acceler-
ation y =1/, p¢
If, finally, we equate Hy and Hy to zero, we ob-

tain a superposition of independent motions in the x-

direction (in accordance with the same law as for a

plane diode)

z" =J4’, pI :1, J4" :’yp,y

while in the yz plane (motion in uniform electric and
magnetic fields)
(1.8)

7= — oy

y =P +oz,
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The solution of (1.8) when v(0) = w(0) = 0 will be
the cycloids

Y =% (g y) =1 —cost,
(1.9)

7 :Eﬁ‘i(z_ Zg) =1 — sin T.

Development of curves (1.9) in space is realized
according to the law x = x(1) of a plane diode. Taking
the potential ¢ as a constant, we obtain cylindrical
surfaces with generators parallel to the z axis, their
shape being given by the potential distribution ¢ =
= @(x; v)in a plane diode.
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The system of equations determining the electro-
static solution 2° for & = 0 has the form

ZIH?JR' :.14', Rpl)n = j,
(1.10)

RY(RJ)) =p, wrv, =8

The first three equations describe flow in a cylin-
drical diode, while the last one gives the z~component
of the velocity. Consequently, the solution for T-re-
gime emission from an indirectly heated cylinder R =
= const is completely determined by the parameters
characterizing the corresponding flow in a cylindrical
diode {6]. Thus, for example, the collector is obtained
by rotating the curve ¢ (R) about the z axis (Fig, 7).*
The particles move in planes ¢ = const which pass

through the emitter axis,
7
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Fig. 5

*In Fig. 7,7 = ¢/ VI R/ "J7(R), Where Ry is
the emitter radius.
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The system of equations for a beam in a uniform
magnetic field directed along the z axis is
vRvR' — R_lvq,z = J4’ —+ thy s

2)4,' - R_1U¢ = — }1, HpZ)R = j, (1.11)

R (RI)) = p,

vro, = B.

It is clear that the solution of the problem can be
given if we know the solution for a cylindrical magne-
tron in the T-regime,
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Fig. 7

Consider flow of type 5° assuming v = 0 in the
magnetic field given in the last column of Table 2:

v} — HypsescOvy + o =0,

vy (0 — Hop ctg 8 — Hogcsc8) = B esc B, (1.12)

Ji = —etgbu® — Howvy + Hys ese B v,
Js = a + csc B (sin@J,).

When the inequality Hy? > 4a is satisfied, we have two different
solutions where all the determining quantities can be found from (1, 12)
using algebra and differentiation: only the potential is computed by
taking quadratures, When 8 = 0, this solution is meaningful for 0 =
= ¢ <2r. The particles move in space along spirals, obtained by the
intersection of the equipotential surfaces and the cones. Figure 8 gives
a schematic representation of the upper half of the equipotential sur-
face ¢ = const. The surfaces ¢ = const intersect the horizontal plane
6 = /2 along spirals determined by the equation

S (r,Y,m,9) =alnr+ B¢ + J, (t/;n) = const.

The trace of the equipotential surface in the half-plane ¥ = ¢ is
given by

@ (r, 0,9) =calnr+ J, 0 + Py, = const .



When vy = 0, B = 0 the trajectories will be circles located on the
equipotential surfaces (surfaces of revolution)

® (r, 6) = const .

Note that the solutions considered define Brillouin flows, since the
particles move without intersecting the equipotential surfaces; they
belong to the class of generalized Brillouin flows introduced in [7, 8]
and characterized by the conservation of generalized momentum along
the trajectory.

The solutions given in Table 1 can also determine flows at rela-
tivistic speeds. Since there always exists a nonrelativistic region near
the emitter, all the above remarks about the conditions at the emitter
remain in effect. The solutions 1° and 2° for « = const in this case de-
scribe flows from the plane x = const and the cylinder R = const for a
linear voltage drop across the emitting surface and for T-regime emis-
sion with or without an external magnetic field. However, the con-
struction of each of these solutions is an independent problem and does
not reduce to the corresponding one-dimensional problem. Here, of
course, it is assumed that definite restrictions are imposed on the rela~
tive dimensions of the beam [9, 10], so that we can ignore the mag-
netic self-field,

Fig. 8

§2, Consider a flow of type 5° when @ = § = 0, as-
suming that vg = 0 and the velocities are nonrelativis-
tic; the flow takes place in an external magnetic field
determined by the last column of Table 2. It is de-
scribed by the equations

" == Hy; esc 0w, — Hyvy — ctg 0042,
vy = Jy = Hpctg 04 Hoycsc 6, 2.1)
Js=¢" + ctg 0 9.

Clearly, system (2.1) is subdefinite, which permits
us to take an arbitrary function of 6 as the vy.. For
Hy; = 0 the potential is independent of vy, Formulas

(2.1), in general, specify irregular flow. By requiring

the energy integral to exist in the form (1.1) we ob-
tain an equation for vy

vev, — Hog esc 00, + vy’ + ctg 80,2 +
+ Hywy = 0.

Solving this equation, we obtain

v, = HozIntg 1,8 4+ v, (2.2)

Space spirals on the cones § = const will represent
the particle trajectories for (2.1) (Fig. 9).
When vy = 0 the trajectories degenerate into cir-
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cles. It is clear from (2.1) that v, = 0 when 6 = 6, if
cos 0, = — Hoy / Hyy, | Hyy | Ho | < &. By choosing vpg in
(2.2) we can achieve the equality v, = 0 at 6 = §,. Here,
the field will also be zero on the cone 6 = §;,

When vy = 0, the radial velocity of the regular flow
is given by (2.2). If we set ,y = — Hy; In tg Y, 6, to-
tal space charge conditions* will be satisfied on the
cone 9 = 0.

Let us now examine Brillouin flow in the r-direc-
tion in a conical diode at relativistic velocities, where
strict allowance is made for the magnetic self-field.
The corresponding system (S/H) is subdefinite:

9" = vo.Jy, cscB (sinb¢) =J,,

2.
cse 0 (sin 0 Jg) = v, J5, ©.3)

Vg = Uy :Jg —-—-J7 =0.

Therefore we can take any function satisfying the in-
equality | »]<{1 as the radial velocity (the velocities
are referred to the speed of light). Then

e Jo—_o (Y
sin @ Vi—-o2' 57 sin® Vi=o7 ’

’

@ =

- 8 1 2
I = Sy e 2.4)
For arbitrary vy formulas (2. 4) describe vortex
flow. By requiring that there exist the relativistic
equivalent of {1.1), we arrive at the following expres-
sions for the regular flow:

1 — b2 (tg 1/ 0)2*

1= _ Lt eghe®
T B (g 0

v, = =
’ 2b (tg Ya 0)°

Jo= F g @ (2.5)

Here, a and b are arbitrary constants.

*Article [11] dealt with the problem involving the
compensation of the space charge forces of a conical
beam by a magnetic field when Hy; = —Hy, Hy3 = 0.The
assumption that the radial current density was inde-
pendent of 6 led to an approximate solution which is
valid for small angles of convergence, Formulas (2.1)
and (2.2) determine the exact solution which exists for
any ¢ in the more general case: no restrictions on
Hy, H,, and H; and v, = const,
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When a = b =1, formulas (2.5) have the very sim-
ple form

Up = +c080, vg =uvy =0,

p=csc 0, p = r2esc®0, 2.6)

H, =Hy =0, Hy =TF rlesc?h.

For each pair of values of a and b there exists a
cone 6 = 6, with potential ¢ = 1, on which total space
charge conditions hold,

tg 1/2 eo :(2_>1/a-

For (2.6) we have 8, = 7/2. We note in conclusion
that flow in the y-direction can only be regular,
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